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Abstract In this paper, we propose a decidable single-agent modal logic for reason-
ing about goal-directed “knowing how”, based on ideas from linguistics, philosophy,
modal logic, and automated planning inAI.Wefirst define amodal language to express
“I know how to guarantee ϕ givenψ”with a semantics based not on standard epistemic
models but on labeled transition systems that represent the agent’s knowledge of his
own abilities. The semantics is inspired by conformant planning in AI. A sound and
complete proof system is given to capture valid reasoning patterns, which highlights
the compositional nature of “knowing how”. The logical language is further extended
to handle knowing how to achieve a goal while maintaining other conditions.

Keywords Knowing how · Epistemic logic · Conformant planning · Modal logic

1 Introduction

VonWright (1951) andHintikka (1962) laid out the syntactic and semantic foundations
of epistemic logic respectively in their seminal works. The standard picture of epis-
temic logic usually consists of: a propositional modal language which can express “an
agent knows that ϕ”; a Kripke semantics that incarnates the slogan “knowledge (infor-
mation) as elimination of uncertainty”; a proof system that syntactically characterizes
a normal modal logic somewhere between S4 and S5 subjective to different opinions
about the so-called “introspection axioms”. Despite the suspicions from philosophers
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in its early days [cf. (Lenzen 1978)], the past half-century haswitnessed the blossom of
this logical investigation of propositional knowledge with applications in epistemol-
ogy, theoretical computer science, artificial intelligence, economics, and many other
disciplines besides its birth place of modal logic [see, e.g., (Wang 2011, Chap. 2) and
(van Ditmarsch et al. 2015)].

However, the large body of research on epistemic logic mainly focuses on proposi-
tional knowledge expressed by “knowing that ϕ”, despite the fact that in everyday life
knowledge is expressed by also “knowing how”, “knowing why”, “knowing what”,
“knowing whether”, and so on (knowing-wh below for brevity). Linguistically, these
expressions of knowledge share the common form consisting of the verb “know” fol-
lowed by some embedded wh-questions.1 It is natural to assign a high-level uniform
truth condition for these knowledge expressions in terms of knowing an answer to
the corresponding question [cf. e.g., (Harrah 2002)]. In fact, already in the early days
of epistemic logic, Hintikka (1962) had elaborate discussions on knowing-wh and
its relation with questions in terms of first-order modal logic, which also shaped his
later work on Socratic Epistemology (Hintikka 2007). For example, “knowing who
Frank is” is rendered as ∃xK(Frank = x) by Hintikka (1962). See Wang (forthcom-
ing) for a survey on Hintikka’s contributions on this topic. However, partly because
of the then-infamous philosophical and technical issues regarding the foundation of
first-order modal logic (largely due to Quine), the development of epistemic logics
beyond “knowing that” was hindered.2 In the seminal work by Fagin et al. (1995), the
first-order epistemic logic is just briefly touched without specific discussion of those
expressions using different embedded questions. A promising recent approach is based
on inquisitive semantics where propositions may have both informative content and
inquisitive content [cf. e.g., (Ciardelli et al. 2013)]. An inquisitive epistemic logic
which can handle “knowing that” and “knowing whether” is proposed by Ciardelli
and Roelofsen (2015).

Departing from the linguistically motivated compositional analysis on knowing-
wh, some researchers took a knowing-wh construction as a whole, and introduce a
new modality instead of breaking it down by allowing quantifiers, equality and other
logical constants to occur freely in the language [cf. (Plaza 1989; Hart et al. 1996;
van der Hoek and Lomuscio 2003)]. For example, “knowing what a password is” is
rendered by “Kv password” by Plaza (1989) instead of ∃xK password = x , where Kv
is the new modality. This move seems promising since by restricting the language we
may avoid some philosophical issues of first-order modal logic, retain the decidability
of the logic, and focus on special logical properties of each particular knowing-wh
construction at a high abstraction level. A recent line of work results from this idea

1 There is a cross-lingual fact: such knowing-wh sentences become ungrammatical if the verb “know” is
replaced by “believe”, e.g., I believe how to swim. This may shed some shadow on philosophers’ usual
conception of knowledge in terms of strengthened belief. Linguistically, this phenomenon occurs to many
other verbs which can be roughly categorized using factivity, cf., e.g, (Egrè 2008).
2 Nevertheless Hintikka addressed some of those issues about first-order modal logic insightfully in the
context of epistemic logic, see, e.g., a wonderful survey paper by Hintikka (1989). Many of those issues
are also elegantly addressed in intensional first-order modal logic, cf. e.g., (Fitting and Mendelsohn 1998).
There is a wonderful survey on quantified epistemic logic by Gochet and Gribomont (2006).
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(Wang and Fan 2013, 2014; Fan et al. 2014, 2015; Gu andWang 2016).3 The resulting
logics are usually not normal.4 Moreover, a common technical difficulty in such an
approach is the apparent asymmetry of syntax and semantics: the modal language is
relativelyweak compared to themodels which contain enough information to facilitate
an intuitive semantics of knowing-wh, and this requires new techniques.

1.1 Knowing how

Among all the knowing-wh expressions, the most discussed one in philosophy and AI
is “knowing how”. Indeed, it sounds the most distant from propositional knowledge
(knowledge-that): knowing how to swim seems distinctly different from knowing that
it is raining outside. One question that keeps philosophers busy is whether knowledge-
how (the knowledge expressed by “knowing how”) is reducible to knowledge-that.
Here philosophers split into two stances: the intellectualists who think knowledge-
how is a subspecies of knowledge-that [e.g., (Stanley and Williamson 2001)], and the
anti-intellectuallists who do not think so [e.g., (Ryle 1946)]. The anti-intellectualism
maywin your heart at the first glance by equating knowledge-how to certain ability, but
the linguistically and logicallywell-versed intellectualistsmayhave their comebacks at
times (think about the previously mentioned interpretation of knowing-wh as knowing
an answer).5 In AI, starting from the early days (McCarthy andHayes 1969;McCarthy
1979; Moore 1985), people have been studying about representation and reasoning of
knowledge and action which is often treated as synonym for knowledge-how in AI, in
particular about procedural knowledge based on specifiable plans or strategies such
as coming out of a maze or winning a game. However, there is no common consensus
on how to capture the logic of “knowing how” formally [cf. the excellent surveys by
Gochet (2013) and Ågotnes et al. (2015)].

One problem that bothers logicians is that simply combining “knowing that” and
“ability” does not lead to a genuine notion of “knowing how” as discussed by Herzig
(2015). For example, adding knowledge operator to alternating-time temporal logic by
Alur et al. (2002) can express knowing that there is a strategy for some goal. However
it is a de dicto reading of know-how in the shape of K∃xϕ(x), not the desired de re
reading: ∃xKϕ(x). As Herzig (2015) remarked, people proposed different solutions:
we may specify the x in the modality [e.g., knowing that executing abc will make sure
ϕ (Herzig et al. 2013; Belardinelli 2014)]; we can also try to insert K in-between the
existential quantifier and the ability modality where epistemic see-to-that-it (STIT)
logic may help [cf. e.g., (Broersen and Herzig 2015)].

In this paper, along the line of our previous works, we take “knowing how” as a
singlemodality and present a new attempt to formalize an important kind of “knowing

3 See (Wang forthcoming) for a survey with discussions of related work on quantified epistemic logic.
4 For example, knowing whether p → q and knowing whether p together does not entail knowing whether
q. Likewise, knowing how to p and knowing how to q does not entail knowing how to p ∧ q. Moreover,
you may not know why a tautology is a tautology which contradicts necessitation.
5 Fantl (2008) presents a survey of the debate. A comprehensive collection of the related papers (200+)
can be found at http://philpapers.org/browse/knowledge-how, edited by John Bengson.
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how” and lay out its logic foundation, inspired by the aforementioned perspectives of
linguistics, philosophy, and AI.

Some clarifications have to be made first:

– We will focus on the logic of goal-directed “knowing how” as Gochet (2013)
puts it, such as knowing how to prove a theorem, how to open the door, how to
bake a cake, and how to cure the disease, i.e., linguistically, mainly about knowing
how followed by an achievement verb or an accomplishment verb according to the
classification of Vendler (1967).6 On the other hand, we will not talk about the
following “knowing how”: I know how the computer works (explanation), I know
how happy she is (degree), I know how to speak English (rule-directed) and so on.
In the later part, we will also address goal-directed know-how while maintaining
some conditions, e.g., knowing how to be rich without breaking the law.

– The goal of this paper is not to address the philosophical debates between intel-
lectualism and anti-intellectualism.7 However, to some extent, we are inspired by
the ideas from both philosophical stances.

– We focus on the single-agent case without probability and any measure on the
efforts and expertise in actions.

1.2 Basic ideas behind the syntax and semantics

Different from the cases on “knowing whether” and “knowing what”, there is noth-
ing close to a consensus on what would be the syntax and semantics of the logic of
“knowing how”. Various attempts were made using Situation Calculus, ATL, or STIT
logic to express different versions of “knowing how”, cf. e.g., (Moore 1985; Morgen-
stern 1986; Herzig and Troquard 2006; Broersen 2008; Jamroga and van der Hoek
2004; Gochet 2013). However, as we mentioned before, we do not favor a syntacti-
cally compositional analysis using powerful quantified logical languages. Instead, we
would like to take the “knowing how” construction as a single (and only) modality
in our language. It seems natural to introduce a modality Khϕ to express the goal-
directed “knowing how to achieve the goal ϕ”. It sounds similar to “having the ability
to achieve the goal ϕ”, as many anti-intellectualists would agree. It seems harmless to
go one step further as in the AI literature to interpret this type of “knowing how” as
that the agent can achieve ϕ. However, it is crucial to note the following problems of
such an anti-intelectualistic ability account:

1. Knowing how to achieve a goal may not entail that you can realize the goal now.
For example, as intellectualists would remark, a broken-arm pianist may still know
how to play piano even if he cannot play right now, and a chef may still know how

6 Here knowing how to do an activity (like swimming) is not a typical example for our treatment, although
we hope our formalism captures some common features shared also by them. As discussed in Gochet
(2013), “knowing how” plus activities, thoughmore philosophically interesting, is less demanding in logical
structure than others.
7 The philosophical implication of a similar treatment is discussed by Lau and Wang (2016), where an
intellectualistic account is advocated, which may help to reconcile intellectualism and anti-intellectualistic
ability account.
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to make cakes even when the sugar is run out [cf. e.g., (Stanley and Williamson
2001)].

2. Even when you have the ability to win a lottery by luckily buying the right ticket
(and indeed win it in the end), it does not mean you know how to win the lottery,
since you cannot guarantee the result [cf. e.g., Carr (1979)].

To reconcile our intuition about the ability involved in “knowing how” and the first
problemabove, it is observed byLau andWang (2016) that “knowinghow” expressions
in context often come with implicit preconditions.8 For example, if you ask someone
local in Amsterdam: “Do you know how to go to the airport?” he would probably say
“Yes”. However, if you then tell him that all the public transportation methods are
down due to some strike, then maybe his would say “Then I don’t know”. This shows
that the first claim of “knowing how” assumed some implicit precondition: e.g., the
public transportation is still running. Likewise, it sounds all right to say that you know
how to bake a cake even when you do not have all the ingredients right now: you can
do it given that you have all the ingredients. In our logical language, we make such
context-dependent preconditions explicit by introducing the binarymodalityKh(ψ, ϕ)

expressing that the agent knows how to achieve ϕ given the preconditionψ .9 Actually,
we introduced a similar conditional “knowing what” operator inWang and Fan (2014)
to capture the conditional knowledge such as “I would know my password for this
website, given it is 4-digit” (since I only have one 4-digit password ever).10 Wang
and Fan (2014) showed that this conditionaliztion proved to be also useful to encode
the potential dynamics of knowledge. In the later part of the paper, we generalize the
operator into a ternary one: Kh(ψ, χ, ϕ), read as I know how to achieve ϕ given ψ

while maintaining χ . We will come back to the details later.
Now, to reconcile the intuition of ability-based know-how with the second problem

above, we need to interpret the ability more precisely to exclude the lucky draws.
Our main idea comes from conformant planning in AI which is exactly about how to
achieve a goal by a plan (sequence of actions) which can never fail given some initial
uncertainty [cf. e.g., Smith and Weld (1998)]. The word “conformant” means that the
plan should always work given the uncertainty and no changes are allowed during the
execution. For example,11 consider the following map of a floor in a building, and
suppose that you only know that you are at a p-place but do not know exactly where
you are. Do you know how to reach a safe place (marked by q)?

8 Such conditions are rarely discussed in the philosophical literature of “knowing how”with few exceptions
such as Noë (2005).
9 By using the condition, one can be said to know better how to swim than another if he can do it in a more
hostile environment (thus weakening the condition) see Lau and Wang (2016).
10 Such conditionals are clearly not simple (material) implications and they are closely related to conditional
probability and conditional belief [cf. e.g., Tillio et al. (2014)].
11 Taken from Wang and Li (2012), Yu et al. (2016).
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Example 1

s6 s7 : q s8 : q

s1 r s2 : p r

u

s3 : p r

u

s4 : q r

u

s5

It is not hard to see that there exists a plan to guarantee your safety from any place
marked by p, which is to move r first then move u. On the contrary, the plan rr and the
plan u might fail depending on where you actually are. The locations in the map can
be viewed as states of affairs and the labelled directional edges between the states can
encode your own “knowledge” of the available actions and their effects.12 Intuitively,
to know how to achieve ϕ requires that you can guarantee ϕ. Consider the following
examples which represent the agent’s knowledge about his own abilities.

Example 2

s2 b s4 : q
s1 : p

a

a

s3

s1 : p a

b

s3 : q

s2 : p
b

a s4 : dead

The graph on the left denotes that you know you can do a at the p-state s1 but you are
not sure what the consequence is: it may lead to either s2 or s3, and the exact outcome
is out of your control. Therefore, this action is non-deterministic to you. In this case,
ab is not a good plan since it may fail to be executable. Thus it sounds unreasonable
to claim that you know how to reach q given p.

Now consider the graph on the right. Let a and b be two medicines to cure the same
symptom p depending on the exact cause (s1 or s2). Unfortunately, using in wrong
circumstances the medicines will cause the death of the patient. As a doctor, it is
indeed true that you can cure the patient (to achieve q) if you are told the exact cause.
However, responsible as a doctor, can you say you know how to cure the patient given
only the information of the symptom p? Definitely not. These planning examples
suggest the following truth condition for the modal formula Kh(ψ, ϕ) w.r.t. a graph-
like model representing the agent’s knowledge about his or her abilities in terms of
available actions and their possibly non-deterministic effects: There exists a sequence
σ of actions such that from all the ψ-states in the graph, σ will always succeed in
reaching ϕ-states.

12 The agent may have more abilities de facto than what he may realize. It is important to make sure the
agent can knowingly guarantee the goal in terms of the ability he is aware of, cf. (McCarthy and Hayes
1969; Broersen 2008; Ågotnes et al. 2015).
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Note that the nesting structure of quantifiers in the above truth condition is ∃∀∀.13
The first ∃ fixes a unique plan, the first ∀ checks all the possible states satisfying the
condition ψ , and the second ∀ make sure the goal is guaranteed.

There are several points to be highlighted:

– ∃ cannot be swapped with the first ∀: see the discussion about the second graph
in Example 2, which amounts to the distinction between de re and de dicto in
the setting of “knowing how” [cf. also (Moore 1985; Jamroga and van der Hoek
2004; Herzig and Troquard 2006; Ågotnes et al. 2015) and uniform strategies in
imperfect information games].

– There is no explicit “knowing that” in the above truth condition, which differs from
the formalization ∃xKϕ(x) advocated by intellectualism [e.g., (Stanley 2011)].14

However, you may view the first ∀ as a knowledge operator which is essentially a
universal quantifier over epistemic alternatives (Hintikka 1962). Indeed, the con-
dition ψ gives a range of epistemic possibilities.

– The truth condition is based on a Kripke-like model without epistemic relations,
as in the treatment of (imperfect) procedure information by Wang (2015b). The
graph model represents the agent’s knowledge (or database) of his actions and
their effects. As it will become more clear later on, although the knowing how
logic is apparently not normal, it is not necessary to go for neighbourhood or
topological models to accommodate such a non-normal modal logic, given that
the truth condition of the modality is non-standard [cf. also Kracht and Wolter
(1997)];

– Finally, our interpretation of “knowing how” does not fit the standard epistemic
scheme “knowledge as elimination of uncertainty” proposed by Hintikka (1962).
It is not about possible worlds indistinguishable from the “real world”. The truth of
Kh(ψ, ϕ)does not dependonwhether the currentworld satisfyingψ : the semantics
will let us jump to all the ψ-worlds. As we mentioned, this is to handle the cases
when people have knowledge-how but cannot realize the goal currently. In sum,
“knowing how” is global in nature and it is not a typical contingent knowledge of
the current world (e.g., I know that Johan happen to be sitting in his chair).

In Sect. 2, we flesh out the above ideas in precise definitions: first a simple formal
language, then the semantics based on the idea of conformant planning, and finally
a proof system which is sound and complete, as proved in Sect. 3. The canonical
model construction in Sect. 3 also gives us the small model property (and thus the
decidability) of our logic. In Sect. 4, we generalize our modality to a ternary one to
handle the properties that we want to maintain while reaching a goal. We also intro-
duce the announcement operator into the language to capture updates of background
knowledge. However, the new operator is not reducible in this language. In the last
section, we summarize our new ideas beyond the standard schema of epistemic logic,
and point out many future directions.

13 Brown (1988) introduced a modality for can ϕ with the following ∃∀ schema over neighbourhood
models: there is a relevant cluster of possible worlds (as the outcomes of an action) where ϕ is true in all
of them.
14 This also distinguishes this work from our earlier philosophical discussion in Lau and Wang (2016),
where intellectualism was defended by giving an ∃xKϕ(x)-like truth condition informally.
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2 The framework

As discussed before, we make the implicit precondition in “knowing how” explicit in
the logical language.

Definition 1 Given a set of proposition letters P, the language LKh is defined as
follows:

ϕ ::= � | p | ¬ϕ | (ϕ ∧ ϕ) | Kh(ϕ, ϕ)

where p ∈ P.Kh(ψ, ϕ) expresses that the agent knows how to achieve ϕ givenψ.We
use the standard abbreviations⊥, ϕ∨ψ and ϕ → ψ , and defineUϕ as the abbreviation
of Kh(¬ϕ,⊥). U is intended to be a universal modality as it will become more clear
after defining the semantics.

As we mentioned, in our models, there is no epistemic relation, but only the action
labeled transitions which are used to capture the agent’s abilities.

Definition 2 Given the set of proposition letters P and a countable non-empty set of
action symbols �. An ability map is essentially a labeled transition system (S,R,V)

where:

– S is a non-empty set of states;
– R : � → 2S×S is a collection of transitions labeled by actions in �;
– V : S → 2P is a valuation function.

We write s
a→ t if (s, t) ∈ R(a). For a sequence σ = a1 . . . an ∈ �∗, we write s σ→ t

if there exist s2 . . . sn such that s
a1→ s2

a2→ · · · an−1→ sn
an→ t . Note that σ can be the

empty sequence ε (when n = 0), and we set s
ε→ s for any s. Let σk be the initial

segment of σ up to ak for k ≤ |σ |. In particular let σ0 = ε. We say that σ is strongly

executable at s if: σ = ε, or σ = a1 . . . an and for any 0 ≤ k < n and any t , s
σk→ t

implies that t has at least one ak+1-successor. It is not hard to see that if σ is strongly
executable at s then it is executable at s, i.e., s

σ→ t for some t .

Note that, according to our above definition, ab is not strongly executable from s1
in the left-hand-side model of Example 2, since s3 has no b-successor but it can be
reached from s1 by a = (ab)1.

We want to stress that the symbols in � do not appear in the formal language LKh
and they can vary in different models, in contrast with the usual language of dynamic
logic. However, the following semantics will make use of �, which demonstrates the
asymmetry between syntax and semantics as we discussed.

Definition 3 (Semantics of LKh)
M, s � � always
M, s � p ⇔ p ∈ V (s)

M, s � ¬ϕ ⇔ M, s � ϕ

M, s � ϕ ∧ ψ ⇔ M, s � ϕ and M, s � ψ

M, s � Kh(ψ, ϕ) ⇔ there exists a σ ∈ �∗ such that for all s′ such that M, s′ � ψ :
σ is strongly executable at s′ and for all t such that s′ σ→ t,M, t � ϕ
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Note that the modalityKh is not local in the sense that its truth does not depend on
the designated state where it is evaluated. Thus it either holds on all the states or none
of them. It is not hard to see that the schema of ∃∀∀ appears in the truth condition for
Kh where the last ∀ actually is a conjunction of two universally quantified parts: The
strong executability (there is a ∀ in its definition) and the guarantee of the goal. These
two together make sure the plan will never fail to achieve ϕ. It is a simple exercise to
see thatKh(p, q) holds in themodel of Example 1, but not in themodels of Example 2.

Nowwe can see that the operatorU defined byKh is indeed a universal modality:15

M, s � Uϕ ⇔ for all t ∈ S,M, t � ϕ

To see this, check the following:

M, s � Kh(¬ψ, ⊥) ⇔ there exists a σ ∈ �∗ such that for every M, s′ � ¬ψ :
σ is strongly executable at s′ and if s′ σ→ t then M, t � ⊥

⇔ there exists a σ ∈ �∗ such that for every M, s′ � ¬ψ :
σ is strongly executable at s′ and there is no t such that s′ σ→ t

⇔ there exists a σ ∈ �∗ such that for every M, s′ � ¬ψ : ⊥ holds
⇔ there exists a σ ∈ �∗ such that there is no s′ such that M, s′

� ψ

⇔ for all t ∈ S,M, t � ψ

Here are some useful valid formulas according to the semantics.

Proposition 1 The following are valid:

1 U p ∧ U(p → q) → Uq 2 Kh(p, r) ∧ Kh(r, q) → Kh(p, q)

3 U(p → q) → Kh(p, q) 4 U p → p
5 Kh(p, q) → UKh(p, q) 6 ¬Kh(p, q) → U¬Kh(p, q)

Proof Since U is simply a universal modality, 1 and 4 are obvious. 3 is due to the fact
that ε is allowed as a trivial plan. 5 and 6 are due to the fact thatKh is global. The only
non-trivial case is 2. Note that if there is a strongly executable sequence σ leading you
from any p-state to some r -state, and there is a strongly executable sequence η from
r -states to q-states, then ση is strongly executable from any p-state and it will make
sure that you end up with q-states from any p-state. ��

The validity of (2) above actually captures the intuitive sequential compositionality
of “knowing how”, as desired. Note thatKh(p, q)∧Kh(p, r) → Kh(p, q ∧ r) is not
valid, e.g., knowing how to open the door and knowing how to close the door does not
mean knowing how to open and close the door at the same time.

Based on the above axioms, we propose the following proof system SKH for LKh
(where ϕ[ψ/p] is obtained by uniformly substituting p in ϕ by ψ):

15 Note that U is a very powerful modality in its expressiveness when combined with the standard �
modality, cf. (Goranko and Passy 1992).
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System SKH

Axioms Rules

TAUT all axioms of propositional logic MP
ϕ, ϕ → ψ

ψ

DISTU U p ∧ U(p → q) → Uq NECU
ϕ

Uϕ

COMPKh Kh(p, r) ∧ Kh(r, q) → Kh(p, q) SUB
ϕ(p)

ϕ[ψ/p]
EMPKh U(p → q) → Kh(p, q)

TU U p → p

4KU Kh(p, q) → UKh(p, q)

5KU ¬Kh(p, q) → U¬Kh(p, q)

Proposition 1 plus some reflection on the usual inference rules should establish
the soundness of SKH. For completeness, we first get a taste of the deductive power
of SKH by proving the following formulas which play important roles in the later
completeness proof. In the rest of the paper we use � to denote �SKH .

Proposition 2 We can derive the following in SKH (names are given to be used later):

TRI Kh(p, p)
UKh U(p → r) ∧ U(o → q) ∧ Kh(r, o) → Kh(p, q)

4U U p → UU p
5U ¬U p → U¬U p

COND Kh(⊥, p)
UCONJ U(ϕ ∧ ψ) ↔ (Uϕ ∧ Uψ).

PREKh Kh(Kh(p, q) ∧ p, q).
POSTKh Kh(r,Kh(p, q) ∧ p) → Kh(r, q)

Moreover, the following rule NECKh is admissible: � ϕ �⇒ � Kh(ψ, ϕ).

Proof TRI is proved by applying NECU to the tautology p → p, followed by EMPKh.
UKh says if you weaken the goal and strengthen the condition you still know how.
It is proved by applying EMPKh to U(p → r) and U(o → q) followed by applying
COMPKh twice. 4U and 5U are special cases of 4KU and 5KU respectively since
Uψ := Kh(¬ψ,⊥). Since ⊥ → p is a tautology, we can apply NECU and EMPKh
to obtain COND. UCONJ is a standard exercise for normal modality U . Interestingly,
PREKh says that you know how to guarantee q given both p and the fact that you know
how to guarantee q given p. It can be proved by distinguishing two cases: Kh(p, q)

and¬Kh(p, q), and useCOND andUKh respectively under the help ofNECU.POSTKh
can be proved easily based on COMPKh and PREKh. It says that you know how to
achieve q given r if you know how to achieve a state where you know how to continue
to achieve q.16 Finally NECKh is the necessitation rule for Kh which can be derived

16 This is an analog of a requirement of “knowing how” by Moore (1985, p. 58): you need to make sure
by doing the first step you will know how to continue.
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by starting with the tautology ψ → ϕ (given � ϕ) followed by the applications of
NECU and EMPKh. ��
Remark 1 From the above proposition and the system SKH, we see that U is indeed
an S5 modality which can be considered as a version of “knowing that”: you know
that ϕ iff it holds on all the relevant possible states under the current restriction of
attention (not just the epistemic alternatives to the actual one). The difference is that
here the knowledge-that expressed by Uϕ refers to the “background knowledge” that
you take for granted for now such as the knowledge of the laws of physics, rather than
the contingent knowledge such as “he is sitting on the chair”, which can be made false
when some action happens. Another interesting thing to notice is that UKh actually
captures an important connection between “knowing that” and “knowing how”, e.g.,
you know how to cure a disease if you know that it is of a certain type and you know
how to cure this type of the disease in general. We will come back to the relation
between “knowing how” and “knowing that” at the end of the paper.

It is crucial to establish the following replacement rule to ease the later proofs.

Proposition 3 The replacement of equivalents (� ϕ ↔ ψ �⇒ � χ ↔ χ [ψ/ϕ])
is an admissible rule in SKH, where the substitution [ψ/ϕ] may apply to some (not
necessarily all) of the occurrences.

Proof It becomes a standard exercise in modal logic if we can prove that the following
two rules are admissible in SKH:

� ψ ↔ ϕ �⇒ � Kh(ψ, χ) ↔ Kh(ϕ, χ), � ψ ↔ ϕ �⇒ � Kh(χ, ψ) ↔ Kh(χ, ϕ).

Actually we can derive (all the instances of) these two rules as follows (we only show
the first one since the second one is similar.):

1 ψ ↔ ϕ assumed
2 ϕ → ψ 1,TAUT
3 U(ϕ → ψ) ∧ U(χ → χ) NECU
4 U(ϕ → ψ) ∧ U(χ → χ) ∧ Kh(ψ, χ) → Kh(ϕ, χ) UKh,SUB
5 Kh(ψ, χ) → Kh(ϕ, χ) MP(3, 4)
6 Kh(ϕ, χ) → Kh(ψ, χ) symmetric version of 2–5
7 Kh(ψ, χ) ↔ Kh(ϕ, χ) TAUT

��
In the rest of the paper we often use the above rule of replacement implicitly.

3 Completeness and decidability

Proposition 1 established the soundness of SKH and in this section we show the
completeness.
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Given a set of LKh formulas 	, let 	|Kh be the collection of the Kh-formulas in
it:

	|Kh = {Kh(ψ, ϕ) | Kh(ψ, ϕ) ∈ 	}.

Similarly, let 	|¬Kh be the following collection:

	|¬Kh = {¬Kh(ψ, ϕ) | ¬Kh(ψ, ϕ) ∈ 	}.

Note that the semantics of Kh formulas does not depend on the current state,
thus if they are true then they are true everywhere in the model. It follows that we
cannot build a single canonical model to realize all the consistent sets ofLKh formulas
simultaneously. Instead, for each maximal consistent set of LKh formulas we build a
separate canonical model.

Definition 4 Given a maximal consistent set Γ w.r.t. SKH, let �Γ = {〈ψ, ϕ〉 |
Kh(ψ, ϕ) ∈ Γ }, the canonical model for Γ isMc

Γ = 〈Sc
Γ ,Rc,Vc〉 where:

– Sc
Γ = {	 | 	 is a maximal consistent set w.r.t. SKH and Γ |Kh = 	|Kh};

– Rc : �Γ → 2Sc×Sc
such that 	

〈ψ,ϕ〉−→c Θ iff Kh(ψ, ϕ) ∈ Γ , ψ ∈ 	, and ϕ ∈ Θ;
– p ∈ Vc(	) iff p ∈ 	.

Clearly Γ is a state inMc
Γ . We say that 	 ∈ Sc

Γ is a ϕ-state if ϕ ∈ 	.

The following two propositions are immediate:

Proposition 4 For any 	,	′ in Sc
Γ , any Kh(ψ, ϕ) ∈ LKh, Kh(ψ, ϕ) ∈ 	 iff

Kh(ψ, ϕ) ∈ 	′ iff Kh(ψ, ϕ) ∈ Γ.

Proposition 5 For any 	 ∈ Sc
Γ , if 	

〈ψ,ϕ〉−→ Θ for some Θ ∈ Sc
Γ then 	

〈ψ,ϕ〉→ Θ ′ for
any Θ ′ such that ϕ ∈ Θ ′.

Now we prove a crucial proposition to be used repeatedly later.

Proposition 6 If ϕ ∈ 	 for all 	 ∈ Sc
Γ then Uϕ ∈ 	 for all 	 ∈ Sc

Γ .

Proof Supposeϕ ∈ 	 for all	 ∈ Sc
Γ , then by the definition ofSc

Γ ,¬ϕ is not consistent
with Γ |Kh ∪ Γ |¬Kh , for otherwise Γ |Kh ∪ Γ |¬Kh ∪ {¬ϕ} can be extended into a
maximal consistent set in Sc

Γ due to a standard Lindenbaum-like argument, which
contradicts the assumption that ϕ ∈ 	 for all 	 ∈ Sc

Γ . Thus there are Kh(ψ1, ϕ1),
…, Kh(ψk, ϕk) ∈ Γ |Kh and ¬Kh(ψ ′

1, ϕ
′
1), …, ¬Kh(ψ ′

l , ϕ
′
l) ∈ Γ |¬Kh such that

�
∧

1≤i≤k

Kh (ψi , ϕi ) ∧
∧

1≤ j≤l

¬Kh
(
ψ ′

j , ϕ
′
j

)
→ ϕ.

By NECU,

� U
⎛

⎝
∧

1≤i≤k

Kh(ψi , ϕi ) ∧
∧

1≤ j≤l

¬Kh
(
ψ ′

j , ϕ
′
j

)
→ ϕ

⎞

⎠ .
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By DISTU we have:

� U
⎛

⎝
∧

1≤i≤k

Kh(ψi , ϕi ) ∧
∧

1≤ j≤l

¬Kh
(
ψ ′

j , ϕ
′
j

)
⎞

⎠ → Uϕ.

SinceKh(ψ1, ϕ1),…,Kh(ψk, ϕk)∈Γ |Kh , we haveUKh(ψ1, ϕ1),…,UKh(ψk, ϕk)∈
Γ due to 4U and the fact that Γ is a maximal consistent set. Similarly, we have
U¬Kh(ψ ′

1, ϕ
′
1),…,U¬Kh(ψ ′

j , ϕ
′
j ) ∈ Γ due to5U. Now due to a slight generalization

of UCONJ, we have:

U
⎛

⎝
∧

1≤i≤k

Kh(ψi , ϕi ) ∧
∧

1≤ j≤l

¬Kh
(
ψ ′

j , ϕ
′
j

)
⎞

⎠ ∈ Γ.

Now it is immediate that Uϕ ∈ Γ . Due to Proposition 4, Uϕ ∈ 	 for all 	 ∈ Sc
Γ . ��

Now we are ready to establish another key proposition for the truth lemma.

Proposition 7 If there are ψ ′, ϕ′ ∈ LKh such that for each ψ-state 	 ∈ Sc
Γ we have

	
〈ψ ′,ϕ′〉−→ Θ for some Θ ∈ Sc

Γ , then U(ψ → ψ ′) ∈ 	 for all 	 ∈ Sc
Γ .

Proof Suppose that every ψ-state has an outgoing 〈ψ ′, ϕ′〉-transition, then by the
definition of Rc, ψ ′ is in all the ψ-states. For each 	, either ψ /∈ 	, or ψ ∈ 	. In
the latter ψ ′ ∈ 	 follows. Now by the fact that 	 is maximally consistent it is not
hard to show ψ → ψ ′ ∈ 	 in both cases. By Proposition 6, U(ψ → ψ ′) ∈ 	 for all
	 ∈ Sc

Γ . ��
Now we are ready to prove the truth lemma.

Lemma 1 (Truth lemma) For any ϕ ∈ LKh : Mc
Γ ,	 � ϕ ⇐⇒ ϕ ∈ 	.

Proof Boolean cases are trivial and we only focus on the case of Kh(ψ, ϕ).
�⇒ : IfMc

Γ ,	 � Kh(ψ, ϕ), then according to the semantics, there exists a (possibly
empty) sequence σ ∈ �Γ

∗ such that for every 	′ � ψ : σ is strongly executable at
	′ and if 	′ σ→ 	′′ then Mc

Γ ,	′′ � ϕ. Due to the construction of Rc, there are
Kh(ψ1, ϕ1), …,Kh(ψk, ϕk) in Γ such that σ = 〈ψ1, ϕ1〉 . . . 〈ψk, ϕk〉 for some k ≥ 0.

If there is no ψ-state, then by IH, ¬ψ ∈ Θ for all Θ ∈ Sc
Γ . By Proposition 6,

U¬ψ ∈ 	, i.e.,Kh(ψ,⊥) ∈ 	. Since ⊥ → ϕ and ψ → ψ are tautologies, by NECU,
U(⊥ → ϕ) and U(ψ → ψ) are also in 	. Then by SUB and UKh Kh(ψ, ϕ) ∈ 	.

In the following we suppose that there exists someψ-state and call this assumption
(◦). There are two cases to be considered:
– Suppose that k = 0, i.e, σ = ε: by the semantics, we have for any Θ ∈ Sc

Γ : Θ �
ψ → ϕ, i.e., Θ � ψ or Θ � ϕ. By IH, ψ /∈ Θ or ϕ ∈ Θ . Since Θ is maximally
consistent, ψ → ϕ ∈ Θ for all Θ ∈ Sc

Γ . By Proposition 6, U(ψ → ϕ) ∈ Θ for
all Θ ∈ Sc

Γ . By SUB and EMPKh, we have Kh(ψ, ϕ) ∈ Θ for all Θ ∈ Sc
Γ , in

particular, Kh(ψ, ϕ) ∈ 	.
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– Suppose k > 0, recall that σm is the initial segment of σ up to 〈ψm, ϕm〉. We first
prove the following claim (�):
For any m ∈ {1, . . . , k}: (1)Kh(ψ, ϕm) ∈ Γ , and (2) each ϕm-state is reached via
σm from every ψ-state.
– m = 1 : Due to the semantics of Kh, each ψ-state has an outgoing 〈ψ1, ϕ1〉-
transition.ByProposition5, eachψ-state can reach all theϕ1 states by 〈ψ1, ϕ1〉-
transitions, which proves (2). By Proposition 7, U(ψ → ψ1) ∈ Γ . By the
definition of Rc it is clear that Kh(ψ1, ϕ1) ∈ Γ . Now by SUB and UKh,
Kh(ψ, ϕ1) ∈ Γ .

– Suppose that the claimholds form = n−1 thenweprove that it holds form = n
as well. By IH for the above claim (�), we have (i) Kh(ψ, ϕn−1) ∈ Γ and (ii)
all the ϕn−1-states are reached from eachψ-state by σn−1. Since σ is a witness
of the truth ofKh(ψ, ϕ), σ is strongly executable on eachψ-state. Now due to
(ii) and the strong executability of σ , we have (iii): each ϕn−1-state has some
〈ψn, ϕn〉-successor. By Proposition 7 we have U(ϕn−1 → ψn) ∈ Γ . By the
definition of Rc, Kh(ψn, ϕn) ∈ Γ , thus by UKh we have Kh(ϕn−1, ϕn) ∈ Γ .
Due to (i) and COMPKh, Kh(ψ, ϕn) ∈ Γ. Now for (2) of the claim: by (iii)
and Proposition 5, each ϕn-state is reached from each ϕn−1-state via 〈ψn, ϕn〉.
Thus based on (ii) again, we have each ϕn-state is reached from each ψ-state.

Now Claim (�) is proved. Let m = k, we have (1k) Kh(ψ, ϕk) ∈ Γ and (2k) each
ϕk-state is reached via σk = σ from eachψ-state (under the assumption (◦)). Now
since σ witnesses the truth of Kh(ψ, ϕ), Mc

Γ ,	′ � ϕ for every ϕk-state 	′. By
IH of the main structural induction over formulas, ϕ ∈ 	′ for every 	′ such that
ϕk ∈ 	′. Thus it is not hard to see that ϕk → ϕ is in every state ofSc

Γ , for otherwise
there is a state 	′ such that ϕk,¬ϕ ∈ 	′. By Proposition 6, U(ϕk → ϕ) ∈ Γ .
Thus Kh(ψ, ϕ) ∈ Γ due to (1k), COMPKh and SUB. Therefore Kh(ψ, ϕ) ∈ 	

due to Proposition 4.

This completes the proof of Kh(ψ, ϕ) ∈ 	 ifMc
Γ ,	 � Kh(ψ, ϕ).

Now for the other way around:
⇐�: Suppose that Kh(ψ, ϕ) ∈ 	, i.e., Kh(ψ, ϕ) is in all the states of Mc

Γ by
Proposition 4, we need to show thatMc

Γ ,	 � Kh(ψ, ϕ). There are three cases to be
considered.

– There is no Θ such that ψ ∈ Θ . By IH, there is no Θ such thatMc
Γ ,Θ � ψ then

Mc
Γ ,	 � Kh(ψ, ϕ) trivially holds (by letting σ = ε as a vacuous witness).

– There are Θ,Θ ′ such that ψ ∈ Θ and ϕ ∈ Θ ′. Then by IH, we haveMc
Γ ,Θ � ψ

andMc
Γ ,Θ ′ � ϕ for suchΘ andΘ ′. Then by the construction ofRc and IH again

we know that 〈ψ, ϕ〉 ∈ �Γ is strongly executable, and it will take you to states
where ϕ is true from any state where ψ is true.

– There is some Θ such that ψ ∈ Θ but no Θ such that ϕ ∈ Θ . Then it is clear
that ¬ϕ ∈ Θ for all Θ ∈ Sc

Γ . By Proposition 6, U¬ϕ ∈ Θ for all Θ ∈ Sc
Γ . Now

we have Kh(ϕ,⊥) and Kh(ψ, ϕ) ∈ Θ thus by COMPKh Kh(ψ,⊥) ∈ Θ namely
U¬ψ ∈ Θ . By TU, ¬ψ ∈ Θ for all the Θ ∈ Sc

Γ . However, this is contradictory
to the assumption that ψ ∈ Θ for some Θ ∈ Sc

Γ .

��
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Now due to a standard Lindenbaum-like argument, each SKH-consistent set of for-
mulas can be extended to a maximal consistent set Γ . Due to the truth lemma,
Mc

Γ , Γ � Γ. The completeness of SKH follows immediately.

Theorem 1 SKH is sound and strongly complete w.r.t. the class of all models.

Based on the canonical model construction it is easy to show that LKh has a small
model property.

Proposition 8 If a LKh formula ϕ is satisfiable then it has a model M such that
|M| ≤ 2n where n is the number of proposition letters occurring in ϕ. It follows that
LKh is decidable since it has a finite axiomatization.

Proof Note that given a satisfiable formula ϕ, only the proposition letters that occur in
ϕ matter. Thus we can consider a fragment ofLKh based on the finite set of proposition
letters in ϕ. Clearly, if ϕ is satisfiable in some model w.r.t. the full set of proposition
letters P then it is satisfiable in a model w.r.t. the restricted set of proposition letters:
we can simply forget the valuation of other propositions. Here comes the crucial
observation that Kh-formulas hold globally in the canonical model. It follows that in
the canonical model construction for the restricted language, the maximal consistent
sets are essentially different valuations of the basic propositions in ϕ. Clearly, given the
number of proposition letters n, the maximal size of the canonical model is 2n . ��

Similar to the modal logic S5, we believe that the canonical model can be squeezed
further by a proper selection of relevant parts, and leave the exact complexity to a
further occasion.

4 Achieving while maintaining

“All is fair in love and war”, but in many other cases how we achieve our goals matters
a lot. For example, we do not want to win a game by playing dirty or to be rich by
breaking the law: It is important to maintain our dignity. More generally, actions have
costs, both financially or morally, we need to stay within our “budget” in reaching our
goals. As an everyday life example, you may need to consider how much money you
have in deciding how to go to the airport. Reaching your goal while maintaining some
conditions is very important. In this section, we bring this explicitly into our language
by extending the binary modality Kh into a ternary one.

Definition 5 Given a set of proposition letters P, the language LKhm is defined as
follows:

ϕ ::= � | p | ¬ϕ | (ϕ ∧ ϕ) | Kh(ϕ, ϕ, ϕ)

where p ∈ P. Kh(ψ, χ, ϕ) expresses that the agent knows how to achieve ϕ given ψ

while maintaining χ strictly in-between (excluding the start and the end states).

Of course we can include the start and the end byKh(ψ ∧χ, χ, ϕ ∧χ). Note that the
binary Kh(ψ, ϕ) can be expressed by Kh(ψ,�, ϕ). Similarly Uψ is now defined by
Kh(¬ψ,�,⊥).
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Themodel forLKhm stays the same but we need to generalize the notion of strongly
executability w.r.t. a formula χ : we say that σ is strongly χ -executable at s if: σ = ε,

or σ = a1 . . . an and for any 0 ≤ k < n and any t , s
σk→ t implies that t has at least

one ak+1-successor, and if k + 1 �= n then all the ak+1 successors satisfy χ (w.r.t.
the following semantics). The extra condition is clearly to guarantee χ in-between the
start and the end.

Definition 6 (Semantics of LKhm)

M, s � Kh(ψ, χ, ϕ) ⇔ there exists a σ ∈ �∗ such that for all s′ such that M, s′ � ψ :
σ is strongly χ -executable at s′ and for all t such that s′ σ→ t,M, t � ϕ

Under this semantics, an interesting formula isKh(ψ,⊥, ϕ)which expresses that given
ψ ,ϕ can be reached in atmost one step. Similarly, we can useKh(ψ,⊥, ϕ)∧¬U(ψ →
ϕ) to force the plan to be one-step precisely.

Clearly, our previous axioms still hold under the translation of Kh(ψ, ϕ) :=
Kh(ψ,�, ϕ). However we have further interesting axioms:

COMPKhm Kh(p, o, r) ∧ Kh(r, o, q) ∧ U(r → o) → Kh(p, o, q)

EMPKhm U(p → q) → Kh(p, ⊥, q)

ONEKhm Kh(p, o, q) ∧ ¬Kh(p, ⊥, q) → Kh(p, ⊥, o)
UKhm U(p′ → p) ∧ U(o → o′) ∧ U(q → q ′) ∧ Kh(p, o, q) → Kh(p′, o′, q ′)

COMPKhm is a revised version of COMPKh where we need to combine the inter-
mediate conditions. EMPKhm is a generalization of EMPKh. ONEKhm tells us that if
the plan is more than one step then at least we need to make sure that we can make
the first step to some intermediate states. Finally UKhm is a generalized version of
UKh taking care of the weakening of the intermediate constraint. It is shown by Li and
Wang (2017) that the above axioms plus DISTU,TU and the ternary versions of 4KU
and 5KU are indeed enough to completely axiomatize the logic.

Another intended reason to introduce the middle condition in the Kh modality
is to have better control on the executions of the plans, in hopes of encoding certain
dynamics of knowledge. Our treatment is inspired by van Benthem et al. (2006), where
the relativized common knowledge operator was introduced to facilitate reduction
axioms for epistemic logic with both common knowledge and public announcement.
Let us first introduce the announcement-like modality into the language PALKhm:

ϕ ::= � | p | ¬ϕ | (ϕ ∧ ϕ) | Kh(ϕ, ϕ, ϕ) | [ϕ]ϕ

Intuitively, [θ ]ϕ says that ϕ holds after the information θ is provided. The update of
the new information amounts to the change of the background knowledge throughout
the model, and this will affect the knowledge-how. For example, a doctor may not
know how to treat a patient since he is worried that the only available medicine may
cause some very bad side-effect. Suppose a new scientific discovery shows that the
side-effect is not possible under the relevant circumstance, then the doctor should
know how to treat the patient. We define the semantics for [θ ] following Plaza (1989):
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Definition 7 (Semantics for PALKhm)

M, s � [θ ]ϕ ⇔ IfM, s � θ then M|θ , s � ϕ

where M|θ is 〈S ′,R′,V ′〉 with S ′ = {t ∈ SM | M, t � θ}, R′(a) = R(a)|S ′×S ′
and V ′ = V|S′ .

For example, the left model below depicts the situation where a doctor is not sure
about the effect of the medicine a. Now if he is informed that the situation r can never
happen under the current circumstance ([¬r ]), the model becomes the one at the right
hand side below.

Example 3

s1 : p a

a

s3 : q

s2 : r

[¬r ] s1 : p a s3 : q

According to the semantics, ¬Kh(p,�, q) ∧ [¬r ]Kh(p,�, q) holds at s1 of the left
model above.

van Benthem et al. (2006) showed that the announcement operator cannot be
reduced to epistemic logic with common knowledge. Here the story is similar: it
is impossible to reduce [θ ] within LKh since we cannot control the process of the
plan and it may go via some non-θ worlds. With the help of the middle condition, we
hope to control the whole process and we have the following standard reductions from
PALKhm to LKhm:

[θ ]p ↔ (θ → p)
[θ ]¬ϕ ↔ (θ → ¬[θ ]ϕ)

[θ ](ϕ ∧ ψ) ↔ ([θ ]ϕ ∧ [θ ]ψ)

However, none of the following “natural” candidates to reduce [θ ]Kh is valid:

[θ ]Kh(ψ, χ, ϕ) ↔ (θ → Kh(〈θ〉ψ, [θ ]χ, [θ ]ϕ))

[θ ]Kh(ψ, χ, ϕ) ↔ (θ → Kh(〈θ〉ψ, [θ ]χ, 〈θ〉ϕ))

[θ ]Kh(ψ, χ, ϕ) ↔ (θ → Kh(〈θ〉ψ, 〈θ〉χ, [θ ]ϕ))

[θ ]Kh(ψ, χ, ϕ) ↔ (θ → Kh(〈θ〉ψ, 〈θ〉χ, 〈θ〉ϕ))

To see this, consider the following two models:

s1 : p, q a

a

s4

s2 : p, q
a

s3 : pa

t1 : p, q a t4

t2 : p, q
a

t3 : pa

It is not hard to see that s1 � [p]Kh(p,�, q) but t1 � [p]Kh(p,�, q). However, the
formula p → Kh(〈p〉p, [p]�, 〈p〉q) is false on s1, and p → Kh(〈p〉p, [p]�, [p]q)
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is true on t1. This is because requiring 〈p〉q as the updated goal is too strong, while
requiring [p]q is on the other hand too weak: all the worlds satisfy it. Also note that
changing [p]� into 〈p〉� will not help either, since the trouble is not really about the
intermediate condition. To our surprise, in fact, it is impossible to use LKhm to encode
the dynamic operator!

Proposition 9 PALKhm is strictly more expressive than LKhm.

Proof (Sketch) Recall that in the above two models s1 � [p]Kh(p,�, q) but t1 �

[p]Kh(p,�, q). However, we can show that s1 and t1 are actually indistinguishable
in LKhm. We can do induction on the structure of the formulas to show that for each
n ∈ {1, 2, 3, 4}, sn and tn satisfy exactly the same LKhm formula. The only non-trivial
case is for Kh(ψ, χ, ϕ). We only need to consider the subcase when ψ holds on s1
(and t1 by IH), for otherwise the link between s1 and s2 is irrelevant in the evaluation
of Kh(ψ, χ, ϕ) due to the fact that there is no incoming arrow to s1 or t1. Note that
since the Kh formulas are global and the propositional valuations are the same on
s1, s2, t1, t2, then ψ holds on s1 and t1 implies that it holds on all those four states.
Now note that the only strongly executable plans on both s1 and s2 (and on both t1 and
t2) are ε and a. If a is executed, then starting from s1 and s2 we will end up with the
set {s2, s4}; starting from t1 and t2 we will end up with the corresponding set {t2, t4}.
If ε is executed then the resulting sets of states will be {s1, s2} and {t1, t2} respectively.
Based on IH, {s2, s4} both satisfy ϕ iff {t2, t4} both satisfy ϕ, and {s1, s2} both satisfy
ϕ iff {t1, t2} both satisfy ϕ. A moment of reflection should confirm that Kh(ψ, χ, ϕ)

holds in one model iff Kh(ψ, χ, ϕ) holds in the other model. ��
Note that in the above proof, the intermediate conditions do not really play a role,

due to the special structures of the models. Therefore the above proof can be adapted
to show that the announcement operator is not reducible within LKh. It is still an
open problem to find an extension of LKh (and LKhm) which can pre-encode the
announcements.

Of course, there are also other types of dynamics which are reasonable in the setting
of “knowing how”, e.g., adding or deleting the relations which amounts to the changes
of abilities [cf. (Areces et al. 2015)].

5 Conclusions and future work

In this paper, we propose and study a modal logic of goal-directed “knowing how”.
The highlights of our framework are summarized belowwith connections to our earlier
ideas on non-standard epistemic logics:

– The “knowing how” construction is treated as a single modality similar to our
works on “knowing whether” and “knowing what” (Wang and Fan 2013, 2014;
Fan et al. 2014, 2015).

– The Kh operator is treated as a special conditional: being able to guarantee a goal
given a precondition, inspired by the conditionalization in (Wang and Fan 2014).

– The ability involved is further interpreted as having a plan that never fails to achieve
the goal under the precondition, inspired by our previous work on conformant
planning (Yu et al. 2016).
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– The semantics is based on labeled transition systems representing the agent’s
knowledge of his own abilities, inspired by the framework experimented byWang
(2015b). However, there is no action symbol in our language.

– We also introduced the middle condition to express knowing how to achieve some-
thingwhilemaintaining some conditions, which is inspired by relativized common
knowledge operator proposed by van Benthem et al. (2006).

– The standard semantics of epistemic logic checks all the indistinguishable alterna-
tives. However, our semantics for Kh has a more existential flavor: knowing how
as having at least one good plan.17 Our modal operator is not local to the epistemic
alternatives but it is about all the possible states even when they are distinguishable
from the current world by the agent. Thus a cook can still be said to know how
to cook a certain dish even if he knows that the ingredients are not available right
now.

There are a lot more to explore in terms of model theory, proof theory and complexity
analysis in order to thoroughly understand our logic.Moreover, it is a natural extension
to introduce the standard “knowing that” operatorK into the language, and correspond-
ingly add a set E ⊆ S in the model to capture the agent’s local epistemic alternatives.
Then we can define the local version of “knowing how” Khϕ as Kψ ∧ Kh(ψ, ϕ) for
some ψ . Other obvious next steps include probabilistic and multi-agent versions of
Kh. It also makes good sense to consider group notions of “knowing how” which may
bring it closer to the framework of ATEL, where a group of agents may achieve a lot
more together [cf. Ågotnes et al. (2015)].

An important next step is to consider contingent-plans, instead of our conformant
ones, which are no longer linear but with conditional actions based on the observation
and knowledge of the agent. Such plans make more sense when there are new observa-
tions during the execution of the plan. Syntactically we may consider program-based
“knowing how” where branching plans and iterated plans are allowed. However, if we
keep the logic language as simple as it is now, it may turns out that the we still have
the same logic (valid formulas).

There are also interesting philosophical questions related to our formal theory. For
example, a new kind of logical omniscience may occur: If there is indeed a good
plan to achieve ϕ according to the agent’s abilities then he knows how to achieve ϕ.
Philosophically, it is also debatable whether the introspection axioms should hold for
knowledge-how. Moreover, to the taste of philosophers, maybe an empty plan is not
acceptable to witness knowledge-how, e.g., people would not say one knows how to
digest (by consciously doing nothing). We can define a stronger modality Kh+(ψ, ϕ)

asKh(ψ, ϕ)∧¬U(ψ → ϕ) to rule out such cases.18 Note that although U is definable
by Kh in our setting, it does not have the philosophical implication that knowledge-
that is actually a subspecies of knowledge-howwhich strong anti-intellectulismwould
agree. Nevertheless, our axioms do tell us something about the interactions between

17 This connects with the philosophical concept of knowledge as a strengthened notion based on justified
true belief where the existence of a good justification suffices, cf. also justification logic proposed by
Artemov (2008).
18 The distinction betweenKh andKh+ is similar to the distinction between STIT and deliberative STIT.

123



4438 Synthese (2018) 195:4419–4439

“knowing how” and “knowing that”, e.g., UKh says that (global) knowledge-that may
let us know better how to reach our goal.
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